Manpage of CLOCK_NANOSLEEP

CLOCK_NANOSLEEP

Section: Linux Programmer's Manual (2)
Updated: 2016-03-15
Index
 

NAME

clock_nanosleep - high-resolution sleep with specifiable clock  

SYNOPSIS

#include <time.h>
int clock_nanosleep(clockid_t clock_id, int flags,                    const struct timespec *request,                    struct timespec *remain);

Link with -lrt (only for glibc versions before 2.17).

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_nanosleep():

_POSIX_C_SOURCE >= 200112L
 

DESCRIPTION

Like nanosleep(2), clock_nanosleep() allows the calling thread to sleep for an interval specified with nanosecond precision. It differs in allowing the caller to select the clock against which the sleep interval is to be measured, and in allowing the sleep interval to be specified as either an absolute or a relative value.

The time values passed to and returned by this call are specified using timespecstructures, defined as follows:

struct timespec {
    time_t tv_sec;        /* seconds */
    long   tv_nsec;       /* nanoseconds [0 .. 999999999] */
};

The clock_idargument specifies the clock against which the sleep interval is to be measured. This argument can have one of the following values:

CLOCK_REALTIME
A settable system-wide real-time clock.
CLOCK_MONOTONIC
A nonsettable, monotonically increasing clock that measures time since some unspecified point in the past that does not change after system startup.
CLOCK_PROCESS_CPUTIME_ID
A settable per-process clock that measures CPU time consumed by all threads in the process.

See clock_getres(2) for further details on these clocks. In addition, the CPU clock IDs returned by clock_getcpuclockid(3) and pthread_getcpuclockid(3) can also be passed in clock_id.

If flagsis 0, then the value specified in requestis interpreted as an interval relative to the current value of the clock specified by clock_id.

If flagsis TIMER_ABSTIME, then requestis interpreted as an absolute time as measured by the clock, clock_id. If requestis less than or equal to the current value of the clock, then clock_nanosleep() returns immediately without suspending the calling thread.

clock_nanosleep() suspends the execution of the calling thread until either at least the time specified by requesthas elapsed, or a signal is delivered that causes a signal handler to be called or that terminates the process.

If the call is interrupted by a signal handler, clock_nanosleep() fails with the error EINTR. In addition, if remainis not NULL, and flagswas not TIMER_ABSTIME, it returns the remaining unslept time in remain. This value can then be used to call clock_nanosleep() again and complete a (relative) sleep.  

RETURN VALUE

On successfully sleeping for the requested interval, clock_nanosleep() returns 0. If the call is interrupted by a signal handler or encounters an error, then it returns one of the positive error number listed in ERRORS.  

ERRORS

EFAULT
requestor remainspecified an invalid address.
EINTR
The sleep was interrupted by a signal handler; see signal(7).
EINVAL
The value in the tv_nsecfield was not in the range 0 to 999999999 or tv_secwas negative.
EINVAL
clock_idwas invalid. (CLOCK_THREAD_CPUTIME_IDis not a permitted value for clock_id.)
 

VERSIONS

The clock_nanosleep() system call first appeared in Linux 2.6. Support is available in glibc since version 2.1.  

CONFORMING TO

POSIX.1-2001, POSIX.1-2008.  

NOTES

If the interval specified in requestis not an exact multiple of the granularity underlying clock (see time(7)), then the interval will be rounded up to the next multiple. Furthermore, after the sleep completes, there may still be a delay before the CPU becomes free to once again execute the calling thread.

Using an absolute timer is useful for preventing timer drift problems of the type described in nanosleep(2). (Such problems are exacerbated in programs that try to restart a relative sleep that is repeatedly interrupted by signals.) To perform a relative sleep that avoids these problems, call clock_gettime(2) for the desired clock, add the desired interval to the returned time value, and then call clock_nanosleep() with the TIMER_ABSTIMEflag.

clock_nanosleep() is never restarted after being interrupted by a signal handler, regardless of the use of the sigaction(2) SA_RESTARTflag.

The remainargument is unused, and unnecessary, when flagsis TIMER_ABSTIME. (An absolute sleep can be restarted using the same requestargument.)

POSIX.1 specifies that clock_nanosleep() has no effect on signals dispositions or the signal mask.

POSIX.1 specifies that after changing the value of the CLOCK_REALTIMEclock via clock_settime(2), the new clock value shall be used to determine the time at which a thread blocked on an absolute clock_nanosleep() will wake up; if the new clock value falls past the end of the sleep interval, then the clock_nanosleep() call will return immediately.

POSIX.1 specifies that changing the value of the CLOCK_REALTIMEclock via clock_settime(2) shall have no effect on a thread that is blocked on a relative clock_nanosleep().  

SEE ALSO

clock_getres(2), nanosleep(2), restart_syscall(2), timer_create(2), sleep(3), usleep(3), time(7)


 

Index

NAME
SYNOPSIS
DESCRIPTION
RETURN VALUE
ERRORS
VERSIONS
CONFORMING TO
NOTES
SEE ALSO

This document was created by man2html, using the manual pages.
Time: 16:30:06 GMT, October 09, 2016 Click Here!