# CACOS

Section: Linux Programmer's Manual (3)
Updated: 2015-04-19
Index

## NAME

cacos, cacosf, cacosl - complex arc cosine

## SYNOPSIS

#include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

## DESCRIPTION

These functions calculate the complex arc cosine of z. If y = cacos(z), then z = ccos(y). The real part of yis chosen in the interval [0,pi].

One has:

```    cacos(z) = -i * clog(z + i * csqrt(1 - z * z))
```

## VERSIONS

These functions first appeared in glibc in version 2.1.

## ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
 Interface Attribute Value cacos(), cacosf(), cacosl() Thread safety MT-Safe

## CONFORMING TO

C99, POSIX.1-2001, POSIX.1-2008.

## EXAMPLE

```/* Link with "-lm" */

#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{
double complex z, c, f;
double complex i = I;

if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);
}

z = atof(argv[1]) + atof(argv[2]) * I;

c = cacos(z);

printf("cacos() = %6.3f %6.3f*i\n", creal(c), cimag(c));

f = -i * clog(z + i * csqrt(1 - z * z));

printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

exit(EXIT_SUCCESS);
}
```

ccos(3), clog(3), complex(7)

NAME
SYNOPSIS
DESCRIPTION
VERSIONS
ATTRIBUTES
CONFORMING TO
EXAMPLE