Manpage of LOG1P

LOG1P

Section: Linux Programmer's Manual (3)
Updated: 2016-03-15
Index
 

NAME

log1p, log1pf, log1pl - logarithm of 1 plus argument  

SYNOPSIS

#include <math.h>double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);
Link with -lm.

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

log1p():

_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
    || _XOPEN_SOURCE >= 500
    || /* Since glibc 2.19: */ _DEFAULT_SOURCE
    || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

log1pf(), log1pl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
    || /* Since glibc 2.19: */ _DEFAULT_SOURCE
    || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
 

DESCRIPTION

These functions return a value equivalent to
    log (1 + x)

The result is computed in a way that is accurate even if the value of xis near zero.  

RETURN VALUE

On success, these functions return the natural logarithm of (1 + x).

If xis a NaN, a NaN is returned.

If xis positive infinity, positive infinity is returned.

If xis -1, a pole error occurs, and the functions return -HUGE_VAL, -HUGE_VALF, or -HUGE_VALL, respectively.

If xis less than -1 (including negative infinity), a domain error occurs, and a NaN (not a number) is returned.  

ERRORS

See math_error(7) for information on how to determine whether an error has occurred when calling these functions.

The following errors can occur:

Domain error: x is less than -1
An invalid floating-point exception (FE_INVALID) is raised.
Pole error: x is -1
A divide-by-zero floating-point exception (FE_DIVBYZERO) is raised.

These functions do not set errno.  

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
InterfaceAttributeValue
log1p(), log1pf(), log1pl() Thread safetyMT-Safe
 

CONFORMING TO

C99, POSIX.1-2001, POSIX.1-2008.  

SEE ALSO

exp(3), expm1(3), log(3)


 

Index

NAME
SYNOPSIS
DESCRIPTION
RETURN VALUE
ERRORS
ATTRIBUTES
CONFORMING TO
SEE ALSO

This document was created by man2html, using the manual pages.
Time: 22:27:50 GMT, June 20, 2016 Click Here!